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Abstract—Prior research on language steganography, such as 
synonym replacement and sampling-based techniques, typically 
involved the intentional manipulation of observable symbols to 
hide sensitive information, which raised security concerns. In this 
letter, we investigated generation-based linguistic steganography 
in latent space by encoding hidden messages in the selection of 
implicit characteristics (semanteme) of natural language, hence 
preventing simple operations on seen symbols. We put out a 
brand-new rejection sampling-based linguistic semantic 
steganography framework. In particular, we used a semantic 
classifier for extraction and a controlled text generation model 
for embedding. A model based on BERT and CTRL is used in 
experiments to provide further quantitative evaluation. The 
results show that our method can achieve nearly flawless 
imperceptibility and satisfactory efficiency. 

Index Terms—Controllable text generation, linguistic 
steganography, rejection sampling, semantic steganography. 

 
I. INTRODUCTION 

TEGANOGRAPHY [1] is the art and science of commu- 

nicating in such a way that the presence of secret messages 

cannot be detected. The research and exploration of modern 

steganography began in 1984 when Simmons proposed the 

Prisoners’ Problem [2]: Alice and Bob are in jail and locked 

up in separate cells, where the only communication channel is 

monitored by a warden Eve. They attempt to hatch an escape plan 

furtively together by means of communicating with seemingly 

innocuous steganographic carriers (stegocarriers) with secret 

messages concealed inside. Once Eve perceives anything beyond 

the range of what is expected, she will cut off the channel and 

the plan will fail. Hence, the problem of steganography can be 

described as: how can Alice and Bob make the stegocarriers 

secure enough so as not to arouse Eve’s suspicion? 
 

 

 
 

Fig. 1. This figure is a sketch map of the procedure of linguistic semantic 
steganography. Firstly secret message is mapped into a discrete semantic space 
and then the corresponding semantic vector α is fed to the conditional text 
generation module to yield stegotext x. 

 

 
 

There are multiple points of view on the measurement of 

security in steganography. One of the most widely accepted 

is the information-theoretic security proposed by Cachin in 

1998 [3], which is the relative entropy (Kullback–Leibler di- 

vergence, KLD) between distributions of covercarriers PC and 

stegocarriers PS. The lower the entropy, the higher the security. 

A minimum value zero appears when the steganographic system 

(stegosystem) is perfectly secure, which means covercarriers 

and stegocarriers are statistically undistinguishable, or rather, 

imperceptible. 

Modern steganography is generally understood to deal with 

digital media such as images [4], audios [5], videos [6] and 

text [7]. Thereinto, text is prevalent in our daily life, which makes 

it practical to serve as carriers. In 2004, Bennett [8] summa- 

rized two strategies of linguistic steganography: modification- 

based steganography and generation-based steganography. Syn- 

onym substitution is a common way of linguistic modification 

steganography [9]–[11], where Alice replaces some words in 

a covertext with their synonyms according to a special set of 

rules to conceal secret messages. However, since text has limited 

information redundancy compared to images and audios [12], 

it can result in syntactic and semantic unnaturalness easily 

to conduct a substitution operation directly in the observed 

symbolic space (token space) [13]. As for linguistic gener- 

ation steganography, researchers usually utilized autoregres- 

sive language model and employed a steganographic sampling 

(stegosampling) algorithm to embed secret messages during the 

generation procedure [14]–[21]. It may mitigate the unnatural 
 

https://github.com/YangzlTHU/Linguistic-Steganography-and-Steganalysis/tree/master/Steganography/Linguistic-Semantic-Steganography
https://github.com/YangzlTHU/Linguistic-Steganography-and-Steganalysis/tree/master/Steganography/Linguistic-Semantic-Steganography
https://github.com/YangzlTHU/Linguistic-Steganography-and-Steganalysis/tree/master/Steganography/Linguistic-Semantic-Steganography


12 

 

 

Z 

| 

| 

| 

| 

| 
| 

| 

  

| 

| 
| 

 

issue as the output probability distribution of the current token is 

affected by all historical decisions to maintain the fluency of ste- 

gotext. Nevertheless, it is still a straightforward manipulation of 

the observed symbols. Stegosampling algorithms will inevitably 

do damage to the explicit distribution of tokens [17], [18] and 

result in a gap between stegotext and covertext. 

As monitoring party of the public channel, Eve is usually 

assumed to have full knowledge about the distribution of cover- 

text PC, which means huge potential security problems for 

symbolic steganography that does harm to the explicit distri- 

bution of tokens. Therefore, it is more reasonable to conceal 

secret messages in an implicit way, for example, to manipulate 

a latent space . Secret messages are firstly mapped into a 

latent variable z and then fed to a conditional generative model 

pθ(x z) to yield stegocarrier x. As long as the prior distribution 

p(z) keeps unchanged, it will generate stegocarriers with the 

same distribution as that generated by innocent users according 

to pθ(x) = pθ(x z)p(z), which provides a safeguard for the 

information-theoretic security DKL(PC, PS). There have been 

attempts of such strategy in the field of image steganography. Liu 

et al. [22] utilized ACGAN [23] to embed secret messages into 

the class labels of generated images. Chen et al. [24] employed 

variational auto-encoders (VAEs) [25] and flow-based mod- 

els [26] to conduct latent space steganography. As for linguistic 

steganography, latent space such as semanteme space, sentiment 

space and so on can also be employed to conceal secret messages. 

In this letter, we consider about avoiding explicit symbolic 

manipulation and strive to take a step towards linguistic semantic 

steganography. Our research is carried out from the perspective 

of information-theoretic security, which aims to enhance the 

imperceptibility of stegotext. We proposed a novel framework of 

linguistic semantic steganography, which is illustrated in Fig. 1. 

We divided the implicit semantic space into a finite number of 

separate zones and encoded secret messages in the selection of 

semantic zones. Rejection sampling strategy based on control- 

lable text generation model is employed to generate stegotext 

and semantic classifier is adopted to ensure a completely correct 

extraction. To verify the effectiveness of the framework, we 

implemented a model for quantitative evaluation. Experimen- 

tal results show that the proposed method is able to achieve 

satisfactory efficiency and nearly perfect imperceptibility. 

 

 
II. NOVEL FRAMEWORK OF LINGUISTIC SEMANTIC 

STEGANOGRAPHY 

In this section, we demonstrate a novel framework of lin- 

guistic semantic steganography, which takes advantage of the 

semanteme α of text x to conceal secret messages. The basic 

idea is to adopt a controllable text generation model pθ(x α) 
and a semantic classifier model pφ(α x) for Alice and Bob 

respectively. Controllable text generation is the task of learning 

distribution p(x α) of text x conditioned on semanteme α. It can 

be factorized with the chain rule of probability as follow 

 

p(x|α) = p(xi|x<i, α), (1) 
i 

 

 
 

Fig. 2. This figure illustrates the basic idea of the framework of linguistic 
semantic steganography (left) and that based on rejection sampling strategy 
(right). Secret messages are encoded in the selection of semanteme α. In basic 

embedding algorithm (left top), stegotext is the direct output of the controllable 
text generation model, which may lead to errors in extraction algorithm (left 
bottom). To address this gap, we employed rejection sampling strategy (right). 
Extraction algorithm acts as a pre-set hypothesis in embedding algorithm to 
guarantee absolutely correct extraction at Bob’s end. 

 

 

 
where xi denotes the i-th token in the generated sequence. 

In our framework, semantic space is divided into n separate 

zones that is able to encode log(n)-bit information. At Alice’s 

end, based on controllable text generation model pθ(x α), the 

generation of stegotext is conditioned on α that corresponds 

to the secret message m to be embedded. The steganographic 

generating procedure is just a simple sampling process like 

any other innocuous text generation. In this framework, no 

manipulation of the explicit conditional distribution of observed 

variable is required. According to the aforementioned analysis, it 

is capable of achieving nearly perfect imperceptibility if the prior 

p(α) remains unchanged. The condition is obviously satisfied 

because secret information is often thought of as being uni- 

formly distributed, meanwhile innocent users randomly choose 

a semanteme to generate innocuous text. 

At Bob’s end, stegotext is received and inputted into the 

semantic classifier pφ(α x) to regain the semanteme α for 

information extraction. A diagram of the basic idea is illustrated 

in Fig. 2 (left). Such a process requires that the two models are 

infinitely accurate in fitting true probability distributions p(x α) 

and p(α x). On the one hand, it is hard for controllable text 

generation model to depict different semanteme precisely. Gen- 

erating completely irrelevant text given orthogonal attributes is 

still an elusive task. On the other hand, the semantic classifier 

can also be defective. Absolutely correct extraction won’t come 

true as long as one model is biased. 

To get around this, we adopt rejection sampling strategy 

as shown in Fig. 2 (right). Rejection sampling G(p, H0) is 

a special sampling way that repeats basic sampling method 

from distribution p until the sampling value accept a pre-set 

hypothesis H0 [24], [27]. Here the distribution p is set to the 

output of controllable text generation model pθ(x α) and H0 

means correct extraction with semantic classifier. Once mis- 

recognition occurs, the stegotext will be rejected. The precision 

with which different semantemes are distinguished will affect 
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calculated by 

MultiHead(Xi) =  Concat(h1,.. .hh)WO, (2) 

where 

hj = Attn(XiWQ, XiWK, XiWV ),    j = 1 ,..  .,m  
j j j 

QKT 
Attn(Q, K, V ) = softmax( √

d
 )V. (3) 

Q, K ∈ Rdk ×1 and V ∈ Rdv ×1 are auxiliary variables to calcu- 

late self-attention. W Q ,WK  ∈ Rdin×dk , WV ∈ Rdin×dv    and 
 

W O     Rdm·dv ×dout   are trainable parameters. In our implemen- 
tation, we combined the pre-trained base version with a sequence 

classification head to construct the semantic classifier. It is 

fine-tuned on the text generated by controllable text generation 

model with different semantemes. 

We utilized the released CTRL [28] as controllable text 

generation model pθ(x α), which is a conditional Transformer 

language model for controllable text generation. It can generate 

       fluent text conditioned on 55 handcrafted control codes that 
Algorithm 2: Extraction Algorithm. 

 
 

Data: set of semanteme A1×n, stegotext x, semantic 
classifier pφ(α x) 

Result: n-ary secret message m 

1: α× ← argmax(pφ(α|x)); 

2: m ← A.indexof (α×); 
 

 
the count of loops in rejection sampling, which reflects the 

efficiency of steganography. Higher extraction accuracy means 

less regenerating and vice versa. In extreme circumstances, 

100% accurate model is identical to the aforementioned situation 

without rejection sampling strategy while 0% accurate model is 

unable to generate stegotext in a limited time, which makes no 

sense in practice. The embedding algorithm in our framework 

is demonstrated in Algorithm 1. 

The extraction algorithm is actually same as that in the basic 

idea and that in rejection sampling strategy. The pseudocode is 

demonstrated in Algorithm 2. 

 
III. METHODOLOGY OF OUR IMPLEMENTATION 

In order to verify the effectiveness of the proposed frame- 

work of linguistic semantic steganography, we constructed a 

concrete model for further assessment. We adopted large-scale 

Transformer-based models as controllable text generation model 

and semantic classifier. With the development of natural lan- 

guage processing, they can be replaced with more powerful 

models in the future. 

We employed BERT [29] to construct the semantic classifier 

pφ(α x), which is an effective and efficient feature extractor 

that takes full advantage of the bidirectional context of tokens 

and shows powerful capacity for feature extraction. In terms of 

model structure, BERT is basically a multi-layer bidirectional 

Transformer encoder stack. The core function in a Transformer 

architecture [32] is multi-head self-attention. For the input fea- 

ture of the i-th token in a sequence Xi ∈ R1×din , result is 

specify certain semantemes. 

In our implementation, Alice selected 1 of n control codes α 

to embed log(n)-bit secret information and generate stegotext x 
with the released CTRL model by rejection sampling strategy. 

At Bob’s end, the secret information is extracted from x with 

the BERT-based semantic classifier, which is fine-tuned on text 

generated by the released CTRL to learn the high-dimensional 

boundaries of different semantemes. In this scenario, semanteme 

remains uniformly distributed and stegotext is directly gener- 

ated by CTRL without any manipulation in observed symbolic 

space, which makes the stegotext nearly undistinguishable from 

innocuous covertext. 

 
IV. EXPERIMENTS AND ANALYSIS 

We carried out a series of quantitative studies on the effi- 

ciency and imperceptibility of stegotext generated by the pro- 

posed method. In our experiment, the n selected control codes 

(n = 2, 3, 4, 6, 8, 12, 16) are “Movies,” “Translation,” “Preg- 

nancy,” “Christianity,” “Politics,” “Feminism,” “Writing,” “Net- 

flix,” “Gaming,” “India,” “Diet,” “Legal,” “Science,” “Horror,” 

“Links” and “News”. For each control code, we generated 5000 

text with length 50 by the released CTRL for fine-tuning the 

BERT-based semantic classifier. We took the parameters with the 

best test loss during 10-epoch training (with learning rate 0.001 

and batch size 16) as the final training result. The test accuracy 

listed in the second column of Table I shows that the more control 

codes, the more difficult it is to train the classifier. The accuracy 

is 98.80% when n = 2 while it is only 69.14% when n = 16. 

Details of the statistical distribution of the generated stegotext 

can be found in Fig. 3. 

To test the performance of efficiency, we generated 1000 

stegotext and investigated the average loop count in rejection 

sampling. Results are listed in the third column of Table I. When 

there are fewer control codes, the average loop count is just a 

little bit more than the ideal value 1 as the semantic classifier is 

more accurate. The gap gets bigger when n increases but it is 

k 
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Fig. 3.   This figure demonstrates the distribution of stegotext in semantic space under the framework of linguistic semantic steganography when n = 2, 4, 8, 16. 
Each node represents the semantic feature (pooler output of the fine-tuned BERT-based semantic classifier) of a certain stegotext generated by the proposed method, 
which is reduced to a 2-dimensional vector by t-SNE [33]. Semantic space can be divided roughly into n zones to encode log(n)-bit information. 

 

 

TABLE I 
EXPERIMENTAL RESULTS OF EFFICIENCY TEST AND QUALITY TEST 

TABLE II 
EXPERIMENTAL RESULTS OF ANTI-STEGANALYSIS TEST (ACCURACY) 

 

 

 

 

 

 

 

 

 

 

 
 

still acceptable. Even when n = 16 (the accuracy of semantic 

classifier is only 69.14%), it only takes an average of 1.5460 

loops to generate a stegotext containing 4 bits secret information, 

which is efficient enough. The results indicate good practicality 

of rejection sampling strategy. 

To evaluate the performance of imperceptibility, we tested 

the quality of the generated stegotext and its ability to resist 

steganalysis. We utilized the metric perplexity (PPL) to measure 

the quality, and we obtained satisfactory results demonstrated in 

the last column of Table I. In fact, we noticed that the qualtiy of 

stegotext generated with different control codes may be varied. 

For example, we found the average PPL of stegotext condi- 

tioned on “Translation” and “Netflix” is 7.8292 and 30.1886, 

respectively. In actual use, according to the value of n, we can 

preferentially select control codes with smaller PPL, so as to 

ensure the quality and imperceptibility of the generated stegotext 

as much as possible. 

For anti-steganalysis test, we utilized two commonly used 

methods [34], [35] as well as the one based on BERT to distin- 

guish stegotext from covertext standing in the shoes of Eve. We  

took 1000 natural text generated by innocent users as covertext 

and conducted 10-fold cross validation to reduce uncertainty. 

We adopted the result with the lowest test loss during 50-epoch 

training. For [34], we set the window size to 100 and learning 

rate to 0.1. For [35], we constructed filters with size 3, 4, 5 

and number 32. Learning rate was set to 0.01. For BERT-based 

steganalysis method, we used smaller learning rate 0.001. We 

 
also implemented a typical generation-based symbolic 

stegano- graphic method [15] with 1 bit per word embedded 

for compar- ison. Experimental results are shown in Table II, 

from which we found it is able to achieve nearly perfect 

imperceptibility under the proposed framework of linguistic 

semantic steganography. Since the proposed approach 

does not explicitly manipulate the symbols in observed 

space, Eve is unable to detect any abnormality through 

statistical analysis of the observed tokens. More importantly, 

we found the proposed stategy of linguistic semantic 

steganography does not conflict with the traditional 

symbolic steganography, and they can be performed at the 

same time, which is shown in the last two rows of Table II. It 

reveals that superimposing the proposed method on 

symbolic stegano- graphic methods can further improve its 

embedding capacity without damaging the anti-steganalysis 

ability. 

 
V. CONCLUSION 

 In order to confirm the effectiveness and imperceptibility of 

our unique rejection sampling strategy-based framework for 

linguistic semantic steganography, we employed a model built 

with BERT and CTRL in this work. This letter can be 

considered a first attempt, and we hope that additional research 

on the concept of latent space steganography will be possible. 

We also discovered that it is possible to concurrently embed 

hidden messages in latent and visible space; this is a topic we 

think is worth exploring further.  
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